

Course Syllabus

1	Course title	Physics for Medical and Dental
2	Course number	0342105
3	Credit hours	3,0
3	Contact hours (theory, practical)	3,0
4	Prerequisites/corequisites	
5	Program title	Bachelor in Medicine
6	Program code	
7	Awarding institution	The University of Jordan
8	School	Science
9	Department	Physics
10	Course level	100 level
11	Year of study and semester(s)	2023 - 2024 , Fall semester
12	Other department(s) involved in teaching the course	
13	Main teaching language	English
14	Delivery method	In person
15	Online platforms(s)	MS Teams, e-learning
16	Issuing/Revision Date	

17 Course Coordinator:

Name:	Riad Shaltaf	Contact hours:	Sun	-Tues	-Thur	9:30)-1	0:3	30

Office number: 122 Phone number: 22067

Email: r.shaltaf@ju.edu.jo

18 Other instructors:

Name: Mohammad Hussein
Office number:
Phone number:
Email:
Contact hours:
Name: Sami Mahmood
Office number:
Phone number:
Email:
Contact hours:
Name: Mahmoud I. Jaghoub
Office number:
Phone number:
Email:
Contact hours:

	Name: Ziad Abu Waar
	Office number:
	Phone number:
	Email:
	Contact hours:
	Name: Dia Arafah
	Office number:
	Phone number:
	Email:
	Contact hours:
Ĺ	
19	Course Description:
	As stated in the approved study plan.

20 Course aims and outcomes:

A- Aims:

B- Students Learning Outcomes (SLOs):

For purposes of mapping the course SLOs to the physics program SLOs, at the successful completion of the physics program, graduates are expected to be able to:

- **SLO** (1) Master professionally a broad set of knowledge concerning the fundamentals in the basic areas of physics: Quantum Mechanics, Classical Mechanics, Electrostatics and Magnetism, Thermal Physics, Optics, Theory of Special Relativity, Mathematical Physics, Electronics.
- **SLO (2)** Apply knowledge of mathematics and fundamental concepts in the basic areas of physics to identify and solve physics related problems.
- SLO (3) Utilize computers and available software in both data collections and data analysis.
- **SLO (4)** Utilize standard laboratory equipment, modern instrumentation, and classical techniques to design and conduct experiments as well as to analyze and interpret data.
- **SLO** (5) Develop a recognition of the need and ability to engage in life-long learning.
- **SLO** (6) Demonstrate ability to use techniques, skills, and modern scientific tools necessary for professional practice.
- **SLO** (7) Communicate clearly and effectively in both written and oral forms.
- **SLO** (8) Apply proficiently team-work skills and employ team-based learning strategies.
- **SLO** (9) Apply professional and ethical responsibility to society.

Upon successful completion of this course, students will be able to:

Program SLOs	SLO	SLO	SLO	SLO	SLO	SLO	SLO	SLO	SLO
Course SLOs	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
1. Understanding vector algebra	✓	✓							
2. Analyzing 1D motion using Newton's laws of motion (forces on skeleton).	✓	✓							
3. Using the energy conservation's principle in analyzing some medical applications.	✓	✓							

	V

الجودة Examining the kinematics and dynamics of rotational motion (tooth extraction).	✓	✓				
5. Examining the translational and rotational equilibrium cases (joints and muscles).	✓	✓				
6. Analyzing the aspects of fluid statics and fluid dynamics (blood pressure and circulation).	✓	✓				
7. Studying the basic concepts in nuclear medicine and the subject of dosimetry.	✓	✓				
8. Studying the basic concepts of geometrical optics (Ophthalmology)	✓	✓				

21. Topic Outline and Schedule:

C

 $First\ S {\small \texttt{EMESTER}}\ (2022-2023)\ D {\small \texttt{ENTAL}}\ S tudents\ (0342105)$

Course Content:

Chapter no.	Sections	Suggested Problems
	Describing Motion: Kinematics in One Dimension	
	1-5 Units, Standards, and the SI System	
	1-6: Converting Units	
1+2	1-8: Dimensions and Dimensional Analysis	Ch1: 17, 21, 33, 34, 48
	2-1 Reference Frames and Displacement	Ch2: 5, 6, 7, 9, 11, 17, 20, 21
0.5 week	2-2 Average Velocity	
	2-3 Instantaneous Velocity	
	2-4 Acceleration	

3.1 Vectors and Scalars 3.2 Addition of Vectors Graphical Methods 1 week 3.3 Subtraction of Vectors, and Multiplication of a Vector by a Scalar 3.4 Adding Vectors by Components
3.2 Addition of Vectors Graphical Methods 3.3 Subtraction of Vectors, and Multiplication of a Vector by a Scalar 3.4 Adding Vectors by Components
of a Vector by a Scalar 3.4 Adding Vectors by Components
D ' N / A T CM /
Dynamics: Newton's Laws of Motion
4.1 Force
4.2 Newton's First Law of Motion
4.3 Mass
4.4 Newton's Second Law of Motion
4.5 Newton's Third Law of Motion 3,11,28, 31
2 weeks 4.6 Weight 12 the Force of Gravity; and the Normal Force 61
4.7 Solving Problems with Newton's Laws: Free-Body Diagrams
4.8 Problems Involving Friction, Inclines
Work and Energy
6.1 Work Done by a Constant Force
6.3 Kinetic Energy, and the Work-Energy Principle
6.4 Gravitational Potential Energy (Elastic Energy is excluded)
2 weeks 6.5 Conservative and Nonconservative Forces 9, 10, 18, 23, 28, 36, 41, 44, 55,
6.6 Mechanical Energy and its Conservation
6.7 Problem Solving Using Conservation of Mechanical Energy

ACCREDITATION & GUALITY ASSURANCE CENTER	6.8 Other Forms of Energy;	
	6.9 Energy Conservation with Dissipative	
	Forces: Solving Problems	
	6.10 Power	
	Ch7: Linear Momentum	
7+8	7-8 Center of Mass (CM)	Ch7:
	7-9 CM for the Human Body	46, 51, 52, 53
1 weeks	Ch8: Rotational Motion	Ch8:
	8.4 Torque	24, 25, 27
	Static Equilibrium: Elasticity and Fracture	
	9-1 The Conditions for Equilibrium	
9	9–2 Solving Statics Problems	
	9–3 Applications to Musclesand Joints	4, 5, 16, 17, 18, 32, 38, 39, 43, 46,
1.5 weeks	9–4 Stability and Balance	50
	9–5 Elasticity; Stress and Strain	
	9–6 Fracture	
	Fluids	
10	10.1 Phases of Matter	
IV	10.2 Density and Specific Gravity	
2.0	10.3 Pressure in Fluids	5, 10, 11, 18, 20, 26, 27, 38, 48, 54,
2.0 weeks	10.4 Atmospheric Pressure and Gauge Pressure	56, 60, 88

ACCREDITATION & GUALITY ASSURANCE CENTER	10.5 P		
	10.5 Pascal's Principle		
	10.6 Measurements of Pressure; Gauges and		
	the Barometer		
	10.7 Buoyancy and Archimedes' Principle		
	10.8 Fluids in Motion; Flow Rate and the Equation of Continuity		
	10.9 Bernoulli's Equation		
	10.10 Applications of Bernoulli's Principle:Torricelli, Airplanes,		
	Blood Flow		
	10–12 Flow in Tubes: Poiseuille's Equation, Blood Flow		
	LIGHT: GEOMETRIC OPTICS		
	23-1: The Ray Model of Light		
23	23-4: Index of Refraction		
	23-5: Refraction: Snell's Law	25, 26, 28, 31, 34, 36, 40, 42, 45,	
2.0 weeks	23-6: Total Internal Reflection; Fiber Optics	48, 50, 53, 78, 79	
	23-7: Thin Lenses; Ray Tracing		
	23-8: The Thin Lens Equation		
	Nuclear Physics and Radioactivity		
	30-1 Structure and Properties of Nucleus		
30	30-3 Radioactivity		
1 week	30-6 Gamma Decay	2, 37, 43, 42, 46, 49	
2	30-8 Half-Life and Rate of Decay		
T week			

	Nuclear Energy; Effects and Uses of Radiation		
	31.4 Passage of Radiation Through Matter; Biological Damage		
31	31.5 Measurement of Radiation 22 Dosimetry	38, 40, 41, 44, 46	
1 week	31.6 Radiation Therapy	30, 40, 41, 44, 40	
	31–8 Emission Tomography:PET and SPECT		
	31–9 Nuclear Magnetic Resonance (NMR)		
	and Magnetic Resonance Imaging (MRI)		

22 Evaluation Methods:

Opportunities to demonstrate achievement of the SLOs are provided through the following assessment methods and requirements:

Evaluation Activity	Mark	Topic(s)	SLOs	Period (Week)	Platform
First Midterm		Kinematics and dynamics, vectors,	SLOs		
	30%	energy and momentum	1,2,3,4	9 th week	Computerized
Second Midterm	20%	Fluids and statistics and torque	5,6	12 th week	Computerized
Final Exam	50%	All Material	1-8	During Final exam period	Computerized

23 Course Requirements

(e.g: students should have a computer, internet connection, webcam, account on a specific software/platform...etc):

24 Course Policies:

A- Attendance policies:

No more than 15% of classes can be missed under any circumstances. The students are supposed to be on time for each session and will not be admitted after 10 minutes from the starting time.

B- Absences from exams and handing in assignments on time:

Assignments are only taken if submitted on time and no make ups for short quizzes.

C- Health and safety procedures:

The lectures are located in proper locations for best lecturing conditions.

D- Honesty policy regarding cheating, plagiarism, misbehavior:

Any act of cheating or plagiarism is not tolerated and the students are clearly required to submit their own work.

E- Grading policy:

The grading for this course is divided into: 50 % exams, homework, discussions, 50% final exam.

F- Available university services that support achievement in the course:

A proper library and very well furnished lab.

25 References:

A- Required book(s), assigned reading and audio-visuals:

Textbook: "Physics" Douglas C. Giancoli, "Physics", Seventh Edition, Pearson, 2015

B- Recommended books, materials, and media:

Recommended References:

- 1. Joseph W. Kane and Morton M. Sternheim, "Physics", 3rd Edition, (John Wiley & Sons, 1988).
- 2. Raymond A. Serway and John W. Jewett Jr., "**Physics For Scientists and Engineers with Modern Physics**" 7th Edition, (Thomson Learning, Belmont, CA, USA, 2007).

		ature: Date: Nov 1, 2022
Head of C	Curriculum Committee/Department:	Signature:
		g:
Head of I	Department:	Signature:
-		31
Head of C	Curriculum Committee/Faculty:	Signature:
I _		